Wilcox Oil Risk Assessment Meeting

Wilcox Sampling Summary

Event 1 (August 2016)

Completion of a passive soil gas survey.

Event 2 (September 2016)

- Performance of a site reconnaissance;
- Completion of a Wetlands Survey for Sand Creek;
- Collection of groundwater samples from 11 nearby private water wells;
- Collection of 12 vapor intrusion samples from Church, Parsonage, and White properties

Event 3 (October 2016)

Initiated direct push technology (DPT) soil investigation; and provided support to EPA for collection of surface water samples at 11 locations along Sand Creek.

Event 4 (April 2017)

Continued the DPT soil investigation

Event 5 (October 2017)

- Continued the DPT soil investigation
- Sediment and surface water sampling investigation.
- Excavated test pits and collected waste characterization samples

Event 6 (March 2018)

- Continued the DPT soil investigation and
- Collected waste characterization samples at the lead additive area situated at the Wilcox Process Area.

Event 7 (November 2018)

- Continued the DPT soil investigation
- Completed the installation and development of six groundwater monitoring wells at the Lorraine Process Area and Wilcox Process Area.

Event 8 (December 2018)

- Completed the DPT soil investigation
- Collected groundwater samples from 11 private water wells, the six new groundwater monitoring wells, and two existing piezometers.
- Collected surface water and sediment samples from two locations in Sand Creek, near the confluence with the west tributary of Sand Creek.

Soil Sample Locations

Groundwater, Surface Water, and Sediment Sample Locations

PRELIMINARY HUMAN HEALTH RISK ASSESSMENT RESULTS

Human Health Preliminary Conceptual Site Model

Preliminary Human Health Summary

- Based on maximum detected concentrations.
- Waste samples (e.g. WC, TP, and PT), including anticipated removal areas were not considered.
- 2019 sample additions did not significantly change previous reported concentrations.
- Surface water and sediment were evaluated on a site-wide basis.
- Groundwater evaluated on a site-wide basis and monitoring wells and private wells were combined.
- Soil was evaluated based on the five exposure areas (East Tank Farm, Loading Dock Area, Lorraine Process Area, North Tank Farm, and Wilcox Process Area).
- Surface (0-2 ft bgs) and subsurface soil evaluated separately.
- Piezometer samples were not evaluated, although a qualitative discussion about these samples for construction workers (and other receptors if appropriate) will be presented.

Preliminary Human Health Results

- Acceptable risk for surface water and sediment.
- Groundwater shows risk from arsenic, BTEX, and naphthalene. MW-04 and GW-10 (abandoned April 2017) exhibited the highest concentrations.
- Soil Results
 - ◆ East Tank Farm: Surface soil only, PAHs (primarily BaP) for residential receptors and lead.
 - **◆ Loading Dock Area: Acceptable risk.**
 - ◆ Lorraine Process Area: Acceptable risk with the exception of lead.
 - ◆ North Tank Farm: Acceptable risk.
 - Wilcox Process Area: Surface and subsurface soil, PAHs (primarily BaP) for residential receptors and lead.

Preliminary Human Health Cleanup Goals

- Benzo(a)pyrene (BaP)
 - ◆ In selected areas, widespread concentrations > 1 mg/kg.
 - Considering a goal of 5 mg/kg (equivalent to a residential cancer risk of 5 x 10^{-5}) because it is expected that this would result in an area-wide 95UCL of below or near 1 mg/kg.
 - Expected that this would result in acceptable risk levels for both residents and workers.
- Lead
 - ◆ In selected areas, widespread concentrations > 400 mg/kg as well as > 800 mg/kg.
 - ◆ Considering a goal of 1,000 mg/kg, which would
 - Result in acceptable risk to workers,
 - Residential lead risks may be close, particularly in the Wilcox Process Area.

PRELIMINARY ECOLOGICAL RISK ASSESSMENT RESULTS

Ecological Assessment – General Considerations

- US Fish and Wildlife and Oklahoma National Heritage Inventory contacted for potential presence of Threatened and Endangered Species
- No known documentation of Threatened and Endangered species were identified.
- Therefore, the protection of populations of ecological receptors is the focus of the risk assessment.

Preliminary Ecological Conceptual Site Model

Ecological Risk Assessment General Approach

- Ponds were evaluated separately from streams to allow for isolation of contamination.
- Surface soil was evaluated from 0-2 ft bgs
 - ◆WPA/LPA are combined
 - ◆ NTF, LDA, and ETF combined

Ecological Assessment - Aquatic Receptors

Ecological assessment endpoints include protection of the following populations:

- Wetland and Aquatic Plants
- Aquatic and Benthic Organisms
- Aquatic Herbivorous Mammals
 - Muskrat (Ondatra zibethicus)
- Aquatic Herbivorous Birds
 - ◆ Canada goose (Branta canadensis)
- Aquatic Piscivorous Mammals
 - ◆ River otter (Lutra canadensis)
- Aquatic Piscivorous Birds
 - ◆ **Great Blue Heron** (*Ardea herodias*)
 - ◆ **Green Heron** (Butorides virescens)
- Reptiles and Amphibians
 - ◆ American Bullfrog (Rana catesbeiana)
 - **◆ Glossy crayfish snake** (*Regina rigida*)

Ecological Assessment – Terrestrial Receptors

Ecological assessment endpoints include protection of the following populations:

- Terrestrial Plants
- Soil Invertebrates
- Terrestrial Herbivorous Mammals
 - White-footed mouse (Peromyscus leucopus)
- Terrestrial Herbivorous Birds
 - ◆ Song sparrow (Melospiza melodia)
- Terrestrial Insectivorous Mammals
 - ◆ Southern short tailed shrew (Blarina carolinensis)
- Terrestrial Insectivorous Birds
 - **◆ American Robin** (*Turdus migratorius*)
- Predatory Mammals
 - ◆ Red Fox (Vulpes vulpes)
- Predatory Birds
 - ◆ Red-tailed hawk (Buteo jamaicensis)
- Domesticated Mammals
 - Beef Cattle

Ecological Assessment - Preliminary Background Screening

- Maximum detections in surface soil were compared to maximum background concentrations. Metals exceeding background will be carried through risk assessment.
- Aluminum and iron concentrations will be ruled out due to pH
- North Tank Farm, East Tank Farm, and Loading Area
 - ◆ Highest maximum concentrations compared to background are lead and zinc
 - ◆ Barium, cadmium, copper, manganese, and nickel maximum results are at least 10 times the background concentrations.
- Process Areas
 - ◆ Highest maximum concentrations compared to background are copper, lead, and zinc
 - Arsenic, cadmium, and mercury maximum results are at least 10 times the background concentrations.

Ecological Assessment – Preliminary Background Screening

Ponds

- Maximum detections in ponds were compared to maximum background concentrations.
- Background sediment and surface water collected upstream of the site
- Sediment
 - Highest sediment concentrations are located in Ponds 1 and 6
 - Highest sediment concentrations compared to background is hexavalent chromium
 - Other metal concentrations are 2 to 3 times background concentrations

Surface Water

- Highest surface water concentrations are generally located in Pond 2
- Barium is present in surface water at approximately 5 times the background concentration
- Other metal concentrations are 2 to 3 times background concentrations

Ecological Assessment – Preliminary Background Screening

Streams

- **◆ Maximum detections in streams were compared to maximum background concentrations.**
- Background sediment and surface water collected upstream of the site
- Sediment
 - Highest sediment concentrations are generally located in Sand Creek
 - Lead is present in sediment at approximately 7 times the background concentration
 - Other metal concentrations are 2 to 3 times background concentrations

Surface Water

- Highest surface water concentrations are generally located in Sand Creek
- Barium is present in surface water at approximately 5 times the background concentration
- Other metal concentrations are 2 to 3 times background concentrations

Preliminary Ecological Risk Assessment Drivers

- Metals are the driver site wide
 - ◆ Lead, cadmium, copper, zinc and mercury.
 - ◆ Other metals tend to be co-located with the high lead concentrations.
 - ◆ HH considering a goal of 1,000 mg/kg for lead
 - Results in an unacceptable risk to ecological receptors,
 - 400 mg/kg would likely result in acceptable risk levels
- High molecular weight PAHs secondary driver
 - ◆ Eco SSL 1.1 mg/kg
 - ◆ NOAEL used to derive the Eco-SSL is 0.615 mg/kg bw/day
 - ◆ Corresponding LOAEL is 3.07 mg/kg bw/day, approximately 5 times the NOAEL
 - ◆ Preliminary screening level of 5.5 mg/kg, which is approximately 5 times the EcoSSL
 - ◆ Similar to the proposed HH goal of 5 mg/kg.

